
Introduction to Dynamical Systems
Solutions Problem Set 10

Exercise 1. Let A ∈ Mat(n × n,R) a matrix whose eigenvalues λ ∈ C satisfy

α < Re λ < β

for two real numbers α, β. Show that there is an inner product ⟨·, ·⟩ : Rn ×Rn −→ R such that

α ∥x∥2 ≤ ⟨Ax, x⟩ ≤ β ∥x∥2
,

where ∥x∥2 = ⟨x, x⟩.

Solution. Let c be such that Re λ < c < β for all eigenvalue λ of A. We may work in the basis
which represents A in its real canonical form, as composition with a change-of-basis matrix
makes an inner product remain an inner product. Furthermore, we may assume that A consists
of a single block, as proving the result for a block yields the result for a general matrix consisting
of various blocks. These can be either of the form

A =



λ 1
λ 1

λ
. . . 1

λ 1
λ


= λI + N, (1)

or

A =



D I2
D I2

D
. . . I2

D I2
D


, D =

[
α −β
β α

]
, I2 =

[
1 0
0 1

]
. (2)

If A is of the form (1), then the basis vectors {e1, . . . , en} satisfy Nej = ej+1 for 1 ≤ j ≤ n − 1,
and Nen = 0, and letting ε > 0 we may consider a different basis

Bε =
{

e1,
1
ε

e2, . . . ,
1

εn−1 en

}
= {u1, . . . un}

which now satisfies Nuj = εuj+1 for 1 ≤ j ≤ n − 1, and Nun = 0. Therefore, the matrix A in
the new basis Bε corresponds to

Aε =



λ ε
λ ε

λ
. . . ε

λ ε
λ


.
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Let now ⟨·, ·⟩ε be the inner product corresponding to the basis Bε. Then

⟨Ax, x⟩ε

⟨x, x⟩ε

−→ ⟨λIx, x⟩
⟨x, x⟩

, as ε → 0.

Letting ε sufficiently small, the basis satisfies the lemma for a block of the form (1).

For blocks of the form (2) the idea remains the same, and by modifying the basis slightly one
shows the same result. The case where A is semisimple is easy to deal with, as it follows from
direct computations since there are no N or I2 blocks. Finally, the lower bound follows exactly
by the same argument but considering α < c < Re λ.

Exercise 2. Consider the system of ODEs

ẏ = f(y)

where as usual y = (y1, . . . , yn). Assume that 0 ∈ Rn is a fixed point, i.e. f(0) = 0, and
f ∈ C1(Rn,Rn). Finally, assume that Df(0), the Jacobian matrix, only has eigenvalues with
negative real part. By using Exercise 1, show directly (i.e. without using the Hartman-
Grobman theorem) that there exist C > 0, c > 0 and δ > 0 such that for any initial condition

y(0), |y(0)| < δ,

we have that
|y(t)| ≤ Ce−ct |y(0)| .

Solution. Notice that y is given by the Banach fixed point theorem for t ∈ [0, 1] thanks to

y(t) =
∫ t

0
e(t−s)Df(0)F (y(s)) ds + etDf(0)y(0), |F (y)| = o(|y|)

(cf. Lecture9.pdf Lemma 3.3). By noting that now Df(0) has strictly negative eigenvalues, we
have that Exercise 1 holds in the Euclidean norm up to a constant, and we can estimate using
the triangle inequality to show that, whenever t < T ⊂ R is small enough such that F (y(s))
can be bounded by r |y(0)| for a small r > 0, we have

|y(t)| ≤ Ke−κt |y(0)| + Kre−κt

∫ t

0
eκs |y(s)| ds

By rearranging and using that |y(0)| < δ, we reach

eκt |y(t)| ≤ Kδ + Kr

∫ t

0
eκs |y(s)| ds.

At this point we may use Gronwall’s inequality to show that

eκt |y(t)| ≤ KδeKrt.

Rearranging again,
|y(t)| ≤ Kδe(Kr−κ)t.

Now, choosing r small enough such that Kr − κ = −c < 0 and letting δ be small enough so
that |F (y)| ≤ r |y| for all |y| < Kδ, we conclude that

|y(t)| ≤ Ce−ct |y(0)|

for small times t < T . The bound is then easily extended for large times by noting that |y(t)|
decays and therefore |F (y(s))| ≤ r |y(s)| for all s ≥ 0.

Exercise 3. Give an example of a non-diophantine number α ∈ R in the sense of Lec-
ture10.pdf.
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Solution. We look for α ∈ R for which for all c > 0 and d > 0 there is (p, q) ∈ Z+ × Z with∣∣∣∣α − p

q

∣∣∣∣ ≤ c |p|−(d+1)
.

An example of such a number is an appropriate modification of Liouville’s constant. More
generally, Liouville numbers can be constructed by letting b ≥ 2 and choosing (a1, a2, . . . ) such
that 0 ≤ ak ≤ b − 1 and ak ̸= 0 for infinitely many k, and then setting

x =
∑
k≥1

ak

bk! .

Since x has a non-repeating base b representation, it follows that it is not a rational number,
and for any d, c > 0, we choose n = ⌈d⌉ and define pn and qn as

qn = b
n

n+1 n!c1/n, pn = qn

n∑
k=1

ak

bk! .

Then, we estimate

0 <

∣∣∣∣x − pn

qn

∣∣∣∣ =

∣∣∣∣∣x −
n∑

k=1

ak

bk!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=1

ak

bk! −
n∑

k=1

ak

bk!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ak

bk!

∣∣∣∣∣ ≤
∞∑

k=n+1

b − 1
bk!

= b − 1
b(n+1)! ·

∞∑
k=0

1
bk

= b − 1
b(n+1)! · b

b − 1 = b

b(n+1)! ≤ bn!

b(n+1)! = 1
b(n+1)!−n! = c

qn+1
n

≤ c

qd+1
n

.
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